Makine öğrenimi yolculuğunuzu hızlandırmak için videolardan ve görüntülerden gerçek zamanlı verileri ayıklayarak bilgisayar vizyonunu doğru şekilde uygulamak için birinci sınıf uzmanlardan birinci sınıf destek alın
Ekipleri, dünya lideri yapay zeka ürünleri oluşturmaya teşvik etmek.
Bilgisayarla görme, makineleri insanların yaptığı gibi görsel dünyayı görme, anlama ve yorumlama konusunda eğiten bir Yapay Zeka teknolojileri alanıdır. Bir görüntü veya videodaki nesneleri çok daha büyük bir ölçekte ve hızda doğru bir şekilde anlamak, tanımlamak ve sınıflandırmak için makine öğrenimi modellerinin geliştirilmesine yardımcı olur.
Bilgisayarla Görme teknolojilerindeki son gelişmeler, günümüzde farklı sistemlerden üretilen büyük miktardaki verilerden nesneleri doğru bir şekilde tespit etme ve etiketleme konusunda insanların karşılaştığı bazı sınırlamaların üstesinden gelmiştir. Bilgisayar şu 3 görevi etkin bir şekilde çözer:
– Görüntüdeki nesnelerin ne olduğunu ve nerede bulunduklarını otomatik olarak anlayın.
– Bu nesneleri kategorilere ayırın ve aralarındaki ilişkileri anlayın.
– Sahnenin bağlamını anlayın.
ML modellerini görsel dünyayı yorumlamak ve anlamak için eğitmek, büyük miktarda doğru şekilde etiketlenmiş görüntü ve video verisi gerektirir.
Sınırlayıcı kutular, anlamsal segmentasyon, çokgenler, çoklu çizgiler, anahtar nokta açıklamalarına kadar herhangi bir görüntü/video açıklama tekniğinde size yardımcı olabiliriz.
Ayrıca, istenen tutarlılığı ve kaliteyi korurken tercih ettiğiniz araçlar aracılığıyla veri açıklama görevlerinizde sizi desteklemek için ekibinizin bir uzantısı haline gelen yetenekli bir kaynak sunuyoruz. Yetenekli ve deneyimli iş gücümüz, bilgisayarla görme çözümleri için birinci sınıf veri etiketlemesi sağlamak için milyonlarca görüntü ve videoyu etiketleyerek öğrenilen en iyi uygulamaları uygular.
Görüntü/video toplamadan açıklama nesnesi tanımaya ve izlemeye, anlamsal segmentasyona ve 3 boyutlu nokta bulutu açıklamalarına kadar, bilgisayarlı görü modellerinizin performansını artırmak için ayrıntılı, doğru etiketlenmiş görüntüler ve videolar ile görsel dünyanın daha iyi anlaşılmasını sağlıyoruz.
450'dan fazla etnik kökenden 20,000 benzersiz katılımcıyı kapsayan, farklı pozlarda ve varyasyonlarda araç kurulumuna sahip sürücü yüzlerinin 10 bin görüntüsü
Özel gereksinime göre toplanan, 80'tan fazla ülkeden 40 binden fazla simgesel görüntü.
Kolej/Okul kampüsü, Fabrika sahası, Oyun Alanı, Sokak, Sebze Pazarı gibi alanların GPS detayları ile birlikte 84.5k drone videoları.
Açıklamalı görüntülerle 55'den fazla varyasyonda (yemek türü, aydınlatma, iç mekan ve dış mekan, arka plan, kamera mesafesi vb.) 50 bin görüntü
Deri görüntülerinde kanser benlerini tespit etmek veya MRI taramalarında veya hastanın röntgeninde semptom bulmak için ML modellerini eğitin.
İnsan görüntülerini yüz özelliklerine göre tanımlamak için makine öğrenimi modellerini eğitin ve insanları algılamak ve etiketlemek için bunları bir yüz profilleri veritabanıyla karşılaştırın.
Coğrafi işleme için veri kümeleri hazırlamak ve Geo.AI için 3B nokta bulutuna açıklama eklemek için uydu görüntüleri ve İHA fotoğrafçılığına açıklama ekleme.
AR kulaklık ile sanal nesneleri gerçek dünyaya yerleştirin. Duvarlar, masa üstleri ve zeminler gibi düzlem yüzeyleri algılayabilir - derinlik ve boyutların belirlenmesinde ve sanal nesnelerin fiziksel dünyaya yerleştirilmesinde çok kritik bir kısımdır.
Birden fazla kamera, kendi kendine giden arabaları aracı otomatik olarak yönlendirmek ve yolcuyu güvenli bir şekilde sürerken engellere çarpmamak için eğitmek için yakındaki trafik sinyallerinin, yolların, arabaların, nesnelerin ve yayaların sınırlarını belirlemek için farklı bir açıdan videolar çeker.
Perakendede bilgisayar vizyonu ile uygulamalar, müşterilerin kalıp satın almalarına dayalı olarak kişiselleştirilmiş öneriler sunabilir ve raf yönetimi, ödemeler vb. gibi iş operasyonlarını hızlandırabilir.
Ekipleri eğitme ve yönetme konusunda uzmanlar olarak, projelerin belirlenen bütçe dahilinde teslim edilmesini sağlıyoruz.
Ekip, birden fazla kaynaktan gelen verileri analiz eder ve tüm sektörlerde verimli ve hacimli yapay zeka eğitimi verileri üretebilir.
Geniş görüntü verisi gamı, AI'ya daha hızlı eğitim için gereken bol miktarda bilgi sağlar.
Görüntü/video açıklama ve etiketleme konusunda yetkin uzman havuzumuz, doğru ve etkili açıklamalı veri kümeleri sağlayabilir.
Ekibimiz, AI motorlarını eğitmek için görüntü/video verilerini hazırlamanıza yardımcı olarak değerli zaman ve kaynaklardan tasarruf sağlar.
Ortak çalışan ekibimiz, veri çıktısının kalitesini korurken ek hacmi barındırabilir.
Bugün, yüzlerimizin şifrelerimiz olduğu yeni nesil mekanizmanın şafağındayız. Benzersiz yüz özelliklerinin tanınması sayesinde makineler, bir cihaza erişmeye çalışan kişinin yetkili olup olmadığını algılayabilir, suçluları ve kusurluları izlemek için CCTV görüntülerini gerçek görüntülerle eşleştirebilir, perakende mağazalarında suçu azaltabilir ve daha fazlasını yapabilir.
İnsanlar, nesneleri, insanları, hayvanları ve yerleri fotoğraflardan ayırt etme ve kesin olarak tanımlama konusunda doğuştan gelen bir yeteneğe sahiptir. Ancak, bilgisayarlar görüntüleri sınıflandırma yeteneğine sahip değildir. Yine de, bilgisayarla görü uygulamaları ve görüntü tanıma teknolojisi kullanılarak görsel bilgileri yorumlamak üzere eğitilebilirler.
Özel ve eğitimli ekipler:
En yüksek süreç verimliliği aşağıdakilerle sağlanır:
Patentli platform şu avantajlara sahiptir:
Özel ve eğitimli ekipler:
En yüksek süreç verimliliği aşağıdakilerle sağlanır:
Patentli platform şu avantajlara sahiptir:
Aklınızda bir bilgisayarla görme projesi mi var? hadi bağlanalım
Akıllı makineler, olayları daha iyi anlamak ve görmek için görsel dünyayı bağlamsal olarak yorumlayabilmelidir. Computer Vision, makinelerin görüntü ve videolara daha açık hale getirilmesi için öğrenme ve eğitim modelleri geliştirmeyi ve böylece makinelerin tanımlama ve deşifre etme yeteneklerini geliştirmeyi amaçlayan böyle bir dal veya daha doğrusu teknolojik uzmanlıktır.
Bilgisayarla görme, bağımsız bir teknoloji olarak, görsel özerkliğin çeşitli yönlerini hesaba katar. Yaklaşım, insan beynini ve onun görsel varlıkları algılamasını taklit etmeye benzer. Modus operandi, gelişmiş görüntü sınıflandırması, nesne tanımlama, doğrulama ve algılama, yer işareti algılama, nesne tanıma ve son olarak nesne bölütleme için eğitim modellerini içerir.
Bilgisayar görüşünün göze çarpan örneklerinden bazıları, Davetsiz Misafir Algılama sistemleri, Ekran Okuyucular, Arıza Tespiti kurulumları, Metroloji tanımlayıcıları ve çoklu kamera kurulumları, LiDAR üniteleri ve diğer kaynaklarla kurulan kendi kendine giden arabaları içerir.
Görüntü açıklamaları, görselleri daha iyi tanımak, tanımlamak ve anlamak için yapay zeka modellerini eğitmeyi amaçlayan Bilgisayarla Görme alanında denetimli bir öğrenme aracının bir biçimidir. Veri etiketleme olarak da adlandırılan, büyük hacimli görüntü açıklamaları, modelleri kapsamlı bir şekilde eğitir, bu da gelecekte çıkarım yapma ve karar verme yeteneklerini geliştirir.
Computer Vision'daki görüntü açıklamaları, görüntü merkezli veri kümelerine tam olarak eyleme dönüştürülebilir meta veriler eklemek için ilgili araçlar aracılığıyla farklı görüntüleri sınıflandırmayı amaçlar. Daha basit bir ifadeyle, görüntü açıklamaları, makineler tarafından daha iyi anlaşılması için metin veya başka herhangi bir işaretleyici aracılığıyla büyük miktarda görüntüyü işaretler ve böylece onları sınıflandırma ve algılama konusunda daha iyi eğitir.